extension | φ:Q→Out N | d | ρ | Label | ID |
(D5xC22xC4).1C2 = D10:4(C4:C4) | φ: C2/C1 → C2 ⊆ Out D5xC22xC4 | 160 | | (D5xC2^2xC4).1C2 | 320,614 |
(D5xC22xC4).2C2 = D10:8M4(2) | φ: C2/C1 → C2 ⊆ Out D5xC22xC4 | 80 | | (D5xC2^2xC4).2C2 | 320,753 |
(D5xC22xC4).3C2 = C2xD5xC4:C4 | φ: C2/C1 → C2 ⊆ Out D5xC22xC4 | 160 | | (D5xC2^2xC4).3C2 | 320,1173 |
(D5xC22xC4).4C2 = C2xC4:C4:7D5 | φ: C2/C1 → C2 ⊆ Out D5xC22xC4 | 160 | | (D5xC2^2xC4).4C2 | 320,1174 |
(D5xC22xC4).5C2 = C2xD10:2Q8 | φ: C2/C1 → C2 ⊆ Out D5xC22xC4 | 160 | | (D5xC2^2xC4).5C2 | 320,1181 |
(D5xC22xC4).6C2 = D5xC42:C2 | φ: C2/C1 → C2 ⊆ Out D5xC22xC4 | 80 | | (D5xC2^2xC4).6C2 | 320,1192 |
(D5xC22xC4).7C2 = D5xC22:Q8 | φ: C2/C1 → C2 ⊆ Out D5xC22xC4 | 80 | | (D5xC2^2xC4).7C2 | 320,1298 |
(D5xC22xC4).8C2 = C2xD5xM4(2) | φ: C2/C1 → C2 ⊆ Out D5xC22xC4 | 80 | | (D5xC2^2xC4).8C2 | 320,1415 |
(D5xC22xC4).9C2 = C2xD10:3Q8 | φ: C2/C1 → C2 ⊆ Out D5xC22xC4 | 160 | | (D5xC2^2xC4).9C2 | 320,1485 |
(D5xC22xC4).10C2 = C22xQ8xD5 | φ: C2/C1 → C2 ⊆ Out D5xC22xC4 | 160 | | (D5xC2^2xC4).10C2 | 320,1615 |
(D5xC22xC4).11C2 = D5xC2.C42 | φ: C2/C1 → C2 ⊆ Out D5xC22xC4 | 160 | | (D5xC2^2xC4).11C2 | 320,290 |
(D5xC22xC4).12C2 = C22.58(D4xD5) | φ: C2/C1 → C2 ⊆ Out D5xC22xC4 | 160 | | (D5xC2^2xC4).12C2 | 320,291 |
(D5xC22xC4).13C2 = D10:2C42 | φ: C2/C1 → C2 ⊆ Out D5xC22xC4 | 160 | | (D5xC2^2xC4).13C2 | 320,293 |
(D5xC22xC4).14C2 = D10:2(C4:C4) | φ: C2/C1 → C2 ⊆ Out D5xC22xC4 | 160 | | (D5xC2^2xC4).14C2 | 320,294 |
(D5xC22xC4).15C2 = D10:3(C4:C4) | φ: C2/C1 → C2 ⊆ Out D5xC22xC4 | 160 | | (D5xC2^2xC4).15C2 | 320,295 |
(D5xC22xC4).16C2 = D5xC22:C8 | φ: C2/C1 → C2 ⊆ Out D5xC22xC4 | 80 | | (D5xC2^2xC4).16C2 | 320,351 |
(D5xC22xC4).17C2 = D10:7M4(2) | φ: C2/C1 → C2 ⊆ Out D5xC22xC4 | 80 | | (D5xC2^2xC4).17C2 | 320,353 |
(D5xC22xC4).18C2 = C4xD10:C4 | φ: C2/C1 → C2 ⊆ Out D5xC22xC4 | 160 | | (D5xC2^2xC4).18C2 | 320,565 |
(D5xC22xC4).19C2 = D10:5(C4:C4) | φ: C2/C1 → C2 ⊆ Out D5xC22xC4 | 160 | | (D5xC2^2xC4).19C2 | 320,616 |
(D5xC22xC4).20C2 = C2xD10:1C8 | φ: C2/C1 → C2 ⊆ Out D5xC22xC4 | 160 | | (D5xC2^2xC4).20C2 | 320,735 |
(D5xC22xC4).21C2 = C2xD10:C8 | φ: C2/C1 → C2 ⊆ Out D5xC22xC4 | 160 | | (D5xC2^2xC4).21C2 | 320,1089 |
(D5xC22xC4).22C2 = D10:9M4(2) | φ: C2/C1 → C2 ⊆ Out D5xC22xC4 | 80 | | (D5xC2^2xC4).22C2 | 320,1093 |
(D5xC22xC4).23C2 = C2xD10.3Q8 | φ: C2/C1 → C2 ⊆ Out D5xC22xC4 | 80 | | (D5xC2^2xC4).23C2 | 320,1100 |
(D5xC22xC4).24C2 = (C22xC4):7F5 | φ: C2/C1 → C2 ⊆ Out D5xC22xC4 | 80 | | (D5xC2^2xC4).24C2 | 320,1102 |
(D5xC22xC4).25C2 = C2xC42:D5 | φ: C2/C1 → C2 ⊆ Out D5xC22xC4 | 160 | | (D5xC2^2xC4).25C2 | 320,1144 |
(D5xC22xC4).26C2 = C2xD10:Q8 | φ: C2/C1 → C2 ⊆ Out D5xC22xC4 | 160 | | (D5xC2^2xC4).26C2 | 320,1180 |
(D5xC22xC4).27C2 = C22xC8:D5 | φ: C2/C1 → C2 ⊆ Out D5xC22xC4 | 160 | | (D5xC2^2xC4).27C2 | 320,1409 |
(D5xC22xC4).28C2 = D10:10M4(2) | φ: C2/C1 → C2 ⊆ Out D5xC22xC4 | 80 | | (D5xC2^2xC4).28C2 | 320,1094 |
(D5xC22xC4).29C2 = D10:6(C4:C4) | φ: C2/C1 → C2 ⊆ Out D5xC22xC4 | 80 | | (D5xC2^2xC4).29C2 | 320,1103 |
(D5xC22xC4).30C2 = C22xC4.F5 | φ: C2/C1 → C2 ⊆ Out D5xC22xC4 | 160 | | (D5xC2^2xC4).30C2 | 320,1588 |
(D5xC22xC4).31C2 = C22xC4:F5 | φ: C2/C1 → C2 ⊆ Out D5xC22xC4 | 80 | | (D5xC2^2xC4).31C2 | 320,1591 |
(D5xC22xC4).32C2 = C2xD5:M4(2) | φ: C2/C1 → C2 ⊆ Out D5xC22xC4 | 80 | | (D5xC2^2xC4).32C2 | 320,1589 |
(D5xC22xC4).33C2 = C2xD10.C23 | φ: C2/C1 → C2 ⊆ Out D5xC22xC4 | 80 | | (D5xC2^2xC4).33C2 | 320,1592 |
(D5xC22xC4).34C2 = D10.11M4(2) | φ: C2/C1 → C2 ⊆ Out D5xC22xC4 | 80 | | (D5xC2^2xC4).34C2 | 320,1091 |
(D5xC22xC4).35C2 = C4xC22:F5 | φ: C2/C1 → C2 ⊆ Out D5xC22xC4 | 80 | | (D5xC2^2xC4).35C2 | 320,1101 |
(D5xC22xC4).36C2 = C22xD5:C8 | φ: C2/C1 → C2 ⊆ Out D5xC22xC4 | 160 | | (D5xC2^2xC4).36C2 | 320,1587 |
(D5xC22xC4).37C2 = C22xC4xF5 | φ: C2/C1 → C2 ⊆ Out D5xC22xC4 | 80 | | (D5xC2^2xC4).37C2 | 320,1590 |
(D5xC22xC4).38C2 = D5xC2xC42 | φ: trivial image | 160 | | (D5xC2^2xC4).38C2 | 320,1143 |
(D5xC22xC4).39C2 = D5xC22xC8 | φ: trivial image | 160 | | (D5xC2^2xC4).39C2 | 320,1408 |